
Implementation Guide

Dynamic Image Transformation for
Amazon CloudFront (Formerly known as
Serverless Image Handler)

Copyright © 2025 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Dynamic Image Transformation for Amazon CloudFront (Formerly known as
Serverless Image Handler)

Implementation Guide

Dynamic Image Transformation for Amazon CloudFront (Formerly
known as Serverless Image Handler): Implementation Guide

Copyright © 2025 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are
the property of their respective owners, who may or may not be affiliated with, connected to, or
sponsored by Amazon.

Dynamic Image Transformation for Amazon CloudFront (Formerly known as
Serverless Image Handler)

Implementation Guide

Table of Contents

Solution overview .. 1
Features and benefits .. 2
Use cases .. 3
Concepts and definitions .. 3

Architecture overview ... 4
Architecture diagram ... 4

S3 Object Lambda Architecture Info .. 6
Choosing an Architecture .. 7

Architecture details ... 8
Demo UI .. 8
Smart cropping ... 8
Content moderation ... 8
Cross-origin resource sharing ... 9
Image URL signature ... 9
Default fallback image .. 11
AWS services in this solution ... 11

Plan your deployment ... 13
Supported AWS Regions ... 13

Opt-in Regions ... 14
Cost ... 14

Sample cost table ... 14
Demo UI .. 16
Image modification and analysis ... 16

Security ... 16
Demo UI .. 17
IAM roles ... 17
Amazon API Gateway ... 17
Amazon CloudFront .. 17

Quotas .. 18
AWS CloudFormation quotas ... 18
AWS Lambda quotas .. 18
Amazon API Gateway quotas ... 18

Optional Mappings .. 18
Operational Dashboard ... 19

iii

Dynamic Image Transformation for Amazon CloudFront (Formerly known as
Serverless Image Handler)

Implementation Guide

Sharp Size Limit .. 20
Deploy the solution ... 21

AWS CloudFormation template ... 21
Launch the stack .. 22

Attaching an existing CloudFront distribution .. 28
Update the solution .. 30

Backward compatibility ... 31
Thumbor compatibility .. 32
Custom compatibility ... 32
Maintain existing endpoint and cache when modifying architecture type 33

Troubleshooting ... 34
Contact AWS Support ... 34

Create case ... 34
How can we help? .. 34
Additional information .. 34
Help us resolve your case faster ... 35
Solve now or contact us .. 35

Uninstall the solution ... 36
Using the AWS Management Console ... 36
Using AWS Command Line Interface ... 36
Deleting the Amazon S3 buckets ... 36

Use the solution .. 38
Use the demo UI .. 38
Use the solution with a frontend application .. 39
Create and use image requests ... 39

Dynamically resize photos .. 41
Edit images ... 42
Use smart cropping .. 43
Use round cropping .. 44
Overlay an image .. 45
Overwrite animated status ... 47
Activate and use content moderation .. 48
Include custom response headers ... 49
Include request expiration .. 50

Use supported Query Parameter edits .. 50
Use supported Thumbor filters ... 52

iv

Dynamic Image Transformation for Amazon CloudFront (Formerly known as
Serverless Image Handler)

Implementation Guide

Define the source bucket for the request .. 52
Resize an image .. 53
Use filters ... 53
Use multiple filters ... 55

Custom image requests .. 55
Updating template parameters ... 58
Use the rewrite feature ... 59

Replace filters- with filters: .. 60
Reverse path order ... 60
Parse request type .. 61

Rotate images manually ... 61
Developer guide ... 62

Source code ... 62
API reference ... 62

Reference .. 63
Anonymized data collection .. 63
S3 Object Lambda architecture response latency ... 65
Related resources ... 65
Contributors ... 65

Revisions ... 67
Notices .. 68

v

Dynamic Image Transformation for Amazon CloudFront (Formerly known as
Serverless Image Handler)

Implementation Guide

Serverless architecture for cost-effective image
processing

Publication date: June 2017. Check the CHANGELOG.md file in the GitHub repository to see
all notable changes and updates to the software. The changelog provides a clear record of
improvements and fixes for each version.

The Dynamic Image Transformation for Amazon CloudFront solution helps you embed images on
your websites and mobile applications to drive user engagement. It uses the sharp Node.js library
to provide high-speed image processing without sacrificing image quality. To minimize your costs
of image optimization, manipulation, and processing, this solution automates version control and
provides flexible storage and compute options for file reprocessing.

This solution automatically deploys and configures a serverless architecture optimized for dynamic
image manipulation. Images can be rendered and returned spontaneously. For example, you can
automate resizing of an image based on different screen sizes by adding code on your website
that leverages this solution. This helps you adapt your website’s presentation to meet your users'
different modes of viewing. This solution uses Amazon CloudFront for global content delivery and
Amazon Simple Storage Service (Amazon S3) for reliable and durable cloud storage.

This implementation guide provides an overview of the Dynamic Image Transformation for
Amazon CloudFront solution, its reference architecture and components, considerations for
planning the deployment, configuration steps for deploying the solution to the Amazon Web
Services (AWS) Cloud.

The intended audience for implementing this solution in their environment includes solution
architects, business decision makers, DevOps engineers, data scientists, and cloud professionals.

Use this navigation table to quickly find answers to these questions:

If you want to . . . Read . . .

Know the cost for running this solution.

The estimated cost for running this solution in
the US East (N. Virginia) Region is approxima
tely USD $5.30 per month for 100,000 new
images.

Cost

1

https://github.com/aws-solutions/serverless-image-handler/blob/main/CHANGELOG.md
https://sharp.pixelplumbing.com/
https://aws.amazon.com/cloudfront/
https://aws.amazon.com/s3/

Dynamic Image Transformation for Amazon CloudFront (Formerly known as
Serverless Image Handler)

Implementation Guide

If you want to . . . Read . . .

Understand the security considerations for this
solution.

Security

Know how to plan for quotas for this solution. Quotas

Know which AWS Regions support this
solution.

Supported AWS Regions

View or download the AWS CloudForm
ation template included in this solution
to automatically deploy the infrastructure
resources (the "stack") for this solution.

AWS CloudFormation template

Access the source code and optionally use the
AWS Cloud Development Kit (AWS CDK) to
deploy the solution.

GitHub repository

Features and benefits

This solution provides the following features:

Dynamic content delivery

Automatically modify images based on users' devices and screen sizes.

Content moderation

Use Amazon Rekognition to automatically detect and blur inappropriate user-uploaded images.

Smart cropping

Use Amazon Rekognition to crop images using facial recognition.

Low-cost image storage

Save on image storage costs by generating modified images at runtime, and caching generated
images in CloudFront.

Features and benefits 2

https://github.com/aws-solutions/serverless-image-handler/tree/main
https://aws.amazon.com/rekognition/

Dynamic Image Transformation for Amazon CloudFront (Formerly known as
Serverless Image Handler)

Implementation Guide

Use cases

Drive user engagement

Improve engagement with your mobile application or website by maintaining high-quality images
that adjust for device screen size.

Improve user and brand safety

Automatically detect and blur inappropriate user-uploaded images with machine learning trained
to recognize pre-defined and user-defined categories .

Concepts and definitions

This section describes key concepts and defines terminology specific to this solution:

cross-origin resource sharing (CORS)

Defines a way for client web applications that are loaded in one domain to interact with resources
in a different domain.

fallback image

Image that you set to show when the intended image doesn’t load.

Note

For a general reference of AWS terms, see the AWS Glossary.

Use cases 3

https://docs.aws.amazon.com/general/latest/gr/glos-chap.html

Dynamic Image Transformation for Amazon CloudFront (Formerly known as
Serverless Image Handler)

Implementation Guide

Architecture overview

This section provides a reference implementation architecture diagram for the components
deployed with this solution. Dynamic Image Transformation for Amazon CloudFront maintains two
options for architecture. The Default Deployment uses API Gateway as a CloudFront origin and is
limited to 6 MB responses. The S3 Object Lambda deployment uses a S3 Object Lambda Access
Point as the CloudFront origin and can support as large an image as can be processed before
the 30s response timeout. For more information about differences between the options, refer to
choosing an architecture.

Architecture diagram

Deploying this solution with the default parameters deploys the following components in your
AWS account.

Important

This solution is intended for customers with public applications who want to provide an
option to dynamically change or manipulate their public images. Because of these public
requirements, this template creates a publicly accessible, unauthenticated CloudFront
distribution and Amazon API Gateway endpoint in your account, allowing anyone to access
it. For more information on API Gateway authorization, refer to the Security section. This
solution supports signing requests, which can serve to restrict unauthorized requests, for
more information, refer to the Image URL Signature section.

CloudFormation template deploys AWS resources for serverless image processing.

Architecture diagram 4

https://aws.amazon.com/api-gateway/

Dynamic Image Transformation for Amazon CloudFront (Formerly known as
Serverless Image Handler)

Implementation Guide

Note

AWS CloudFormation resources are created from AWS Cloud Development Kit (AWS CDK)
constructs.

The high-level process flow for the solution components deployed with the AWS CloudFormation
template is as follows:

1. An Amazon CloudFront distribution provides a caching layer to reduce the cost of image
processing and the latency of subsequent image delivery. The CloudFront domain name provides
cached access to the image handler application programming interface (API).

2. Amazon API Gateway / Amazon S3 Object Lambda provides endpoint resources and initiate the
AWS Lambda function /

3. A Lambda function retrieves the image from a customer’s existing Amazon S3 bucket and uses
sharp to return a modified version of the image to the API Gateway/S3 Object Lambda Access
Point.

Architecture diagram 5

https://aws.amazon.com/cdk/
https://aws.amazon.com/cloudfront/
https://aws.amazon.com/api-gateway/
https://aws.amazon.com/s3/features/object-lambda/
https://aws.amazon.com/lambda/
https://aws.amazon.com/s3/

Dynamic Image Transformation for Amazon CloudFront (Formerly known as
Serverless Image Handler)

Implementation Guide

4. A solution-created S3 bucket provides log storage, separate from your customer-created S3
bucket for storing images. If you enter Yes (default entry) for the Deploy Demo UI template
parameter, the solution deploys another S3 bucket for storing the optional demo user interface
(UI).

5. (Optional) If you enter Yes for the Enable Signature template parameter, the Lambda function
retrieves the secret value from your existing AWS Secrets Manager secret to validate the
signature. For more information, see Launch the stack.

6. (Optional) If you use the smart crop or content moderation features, the Lambda function calls
Amazon Rekognition to analyze your image and returns the results.

7. The viewer request is proxied through an Amazon CloudFront function. This function is
responsible for normalizing the accept header and query params to increase the cache hit rate.
As well, if S3 Object Lambda is enabled in the CloudFormation template parameters, the viewer
response will be proxied through a CloudFront function to allow for the rebuilding of certain
response elements that are not natively supported by S3 Object Lambda.

S3 Object Lambda Architecture Info

Note

The S3 Object Lambda architecture allows for returning images which are larger than 6 MB.
This infrastructure replaces the API Gateway component in the default architecture. This
architecture will be used if the Enable S3 Object Lambda template parameter is set to Yes.

Important

This optional architecture makes several changes to the resources in the CloudFormation
stack. Though care has been taken to ensure that responses are as similar as possible
to those returned by the API Gateway Architecture, certain response headers may be
slightly different. If you are updating an existing stack, please validate your application’s
functionality post update. As API Gateway is no longer used as part of this optional
architecture, any existing REST API will be deleted upon updating. When updating a stack
to the S3 Object Lambda architecture, the existing CloudFront distribution will be replaced,
resulting in a new endpoint URL and an empty cache.

S3 Object Lambda Architecture Info 6

https://aws.amazon.com/secrets-manager/
https://aws.amazon.com/rekognition/

Dynamic Image Transformation for Amazon CloudFront (Formerly known as
Serverless Image Handler)

Implementation Guide

Choosing an Architecture

Cost consideration

With 50KB response sizes and 350ms of image processing per image, the Object Lambda
architecture is ~14% less expensive per image. As image sizes increase, the costs for the Object
Lambda architecture will grow faster than for the API Gateway architecture, breaking even when
response sizes are an average of 700 KB. For more information, refer to Transform & Query on the
AWS S3 cost page or Cost.

Image Size

The default architecture limits response sizes to a maximum of 6 MB. The Object Lambda
architecture is only limited by the 30 second CloudFront S3 Origin response timeout. Refer to
Object Lambda architecture response latency for information surrounding expected processing
time for basic requests of various sizes.

Updating an existing deployment

Updating an existing default deployment to a deployment using the S3 Object Lambda
architecture will result in a new CloudFront distribution, with a new API endpoint and an
empty cache. You will need to update references to this endpoint in your application to ensure
functionality. For information on a workaround to use an alternate architecture type while
maintaining the current endpoint URL and cache, refer to the instructions on maintaining the
existing endpoint and cache when modifying architecture type.

Certain response headers in deployments using the S3 Object Lambda architecture are different
from those in a default deployment. Of note, the X-Amz-Apigw-Id and X-Amzn-Trace-Id headers
are no longer present, and the X-Cache header will no longer return "Error from CloudFront" when
the solution returns an error, rather returning whether the Error itself was a cache hit/miss. If you
depend on specific response elements, the default deployment will maintain that functionality.

Choosing an Architecture 7

https://aws.amazon.com/s3/pricing/

Dynamic Image Transformation for Amazon CloudFront (Formerly known as
Serverless Image Handler)

Implementation Guide

Architecture details

This section describes the components and AWS services that make up this solution and the
architecture details on how these components work together.

Demo UI

This solution optionally deploys a demo UI into your account to demonstrate the basic features
of the solution. You can use the UI to interact directly with your new image handler API endpoint,
using image files that already exist in your account.

This solution’s template contains a Deploy Demo UI parameter that’s activated (set to Yes)
by default. If activated, this option deploys an additional Amazon S3 bucket and associated
CloudFront distribution into your account.

Smart cropping

You can use this image request option to crop images using the facial recognition capabilities of
Amazon Rekognition. To generate a cropped image, a Lambda function sends requests to Amazon
Rekognition to identify faces in images and calculate crop areas.

Note

Amazon Rekognition supports only JPEG and PNG file formats for smart cropping. When
using the Amazon Rekognition features with an image that isn’t JPEG or PNG, the solution
automatically converts the image to PNG for use with Amazon Rekognition, then converts
it back to the original format.

Content moderation

You can use this image request option to detect and blur inappropriate images. To detect an
inappropriate image, a Lambda function sends requests to Amazon Rekognition to identify
inappropriate content.

Demo UI 8

Dynamic Image Transformation for Amazon CloudFront (Formerly known as
Serverless Image Handler)

Implementation Guide

Note

Amazon Rekognition supports only JPEG and PNG file formats for content moderation.
When using the Amazon Rekognition features with an image that isn’t JPEG or PNG, the
solution automatically converts the image to PNG for use with Amazon Rekognition, then
converts it back to the original format.

Cross-origin resource sharing

This solution’s template contains two parameters that activate Cross-origin resource sharing
(CORS) for your image handler API: CorsEnabledParameter and CorsOriginParameter. CORS
defines how client web applications loaded in one domain can interact with resources in a different
domain. You can activate CORS for your image handler API to make requests to your image handler
API from outside the domain space of the API.

For example, if you have a public web application hosted on either a custom domain or a cloud
domain outside of AWS, you can activate CORS to fetch original or modified images from the
image handler API.

Note

If you want to change your CORS configuration after deployment, you can activate
or deactivate CORS by editing the CORS_ENABLED (Yes/No) and CORS_ORIGIN
environment variables of the Lambda image handler function. See Using AWS Lambda
environment variables in the AWS Lambda Developer Guide for more information.

Image URL signature

This solution’s template contains three parameters that are required for the image URL
signature functionality: EnableSignatureParameter, SecretsManagerSecretParameter, and
SecretsManagerKeyParameter. To activate this feature:

• Set the EnableSignatureParameter parameter to Yes

• Set the SecretsManagerSecretParameter and SecretsManagerKeyParameter parameters to a
valid secret and key that you originally created in Secrets Manager

Cross-origin resource sharing 9

https://docs.aws.amazon.com/apigateway/latest/developerguide/how-to-cors.html
https://docs.aws.amazon.com/lambda/latest/dg/configuration-envvars.html
https://docs.aws.amazon.com/lambda/latest/dg/configuration-envvars.html

Dynamic Image Transformation for Amazon CloudFront (Formerly known as
Serverless Image Handler)

Implementation Guide

Important

You are responsible for creating the Secrets Manager secret and key. For more information
about Secrets Manager secret creation, refer to Create and manage secrets with AWS
Secrets Manager in the AWS Secrets Manager User Guide.

When you activate this feature, the image handler AWS Lambda function checks for a valid
signature in the image request. If the signature doesn’t match, the solution returns an error
message. When activating the image URL signature, you must provide the signature query string
to your URL. For example, you can create the signature using the following Node.js code:

Note

If you are using query parameter based edits, the query parameters must be sorted prior to
signature generation.

const secret = '<YOUR_SECRET_VALUE_IN_SECRETS_MANAGER>';
const path = '/<YOUR_PATH>'; // Add the first '/' to path.
const query_params = '?<YOUR_QUERY_PARAMS>'
const sorted_query_params = query_params.slice(1).split("&").sort().join("&")
const signature = crypto.createHmac('sha256', secret).update(path
+(sorted_query_params ? `?${sorted_query_params}` : '')).digest('hex');

You can request your image using the image URL signature:

https://<distributionName>.cloudfront.net/<YOUR_PATH>?
query_param2=val2&query_param_1=val1&signature=<YOUR_SIGNATURE>

Note

If you update your existing solution deployment and activate the image URL signature,
the updated stack will no longer be compatible with the existing URLs. You must update
your application to provide the correct signature query string to your URLs. To update the
solution stack, refer to Update the solution.

Image URL signature 10

https://docs.aws.amazon.com/secretsmanager/latest/userguide/manage_create-basic-secret.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/manage_create-basic-secret.html

Dynamic Image Transformation for Amazon CloudFront (Formerly known as
Serverless Image Handler)

Implementation Guide

Note

If you plan to use the Expires query parameter alongside signed requests, ensure you
include the expiration when creating your signature. For more information, refer to Include
request expiration.

Default fallback image

This solution provides a default fallback image feature that returns the specified fallback image
as a result of errors occur during processing, rather than a JSON object error message. This
solution’s template contains three parameters that are required for the default fallback image
feature: EnableDefaultFallbackImageParameter, FallbackImageS3BucketParameter, and
FallbackImageS3KeyParameters.

By default, this feature is deactivated. To activate this feature:

Note

Before activating this feature, if you use an S3 bucket policy in the fallback image S3
bucket, you must edit the bucket policy to allow the CustomResourceFunction and
ImageHandlerFunction AWS Lambda functions to get the default fallback image object.
For more information, see Adding a bucket policy by using the Amazon S3 console.

• Set the EnableDefaultFallbackImageParameter parameter to Yes

• Set the FallbackImageS3BucketParameter and FallbackImageS3KeyParameter parameters to a
valid S3 bucket and object key

AWS services in this solution

AWS service Description

Amazon CloudFront Core. Provides a caching layer to reduce
latency and the cost of image processing for

Default fallback image 11

https://docs.aws.amazon.com/AmazonS3/latest/userguide/add-bucket-policy.html
https://aws.amazon.com/cloudfront/

Dynamic Image Transformation for Amazon CloudFront (Formerly known as
Serverless Image Handler)

Implementation Guide

AWS service Description

subsequent identical requests. Allows pre/post
processing of requests and responses.

AWS Lambda Core. Runs functions to retrieve, modify, and
invoke other services to analyze images. Also
runs a function to support URL signature
validation.

Amazon S3 Core. Stores images, logs, and a demo UI.

Amazon API Gateway Supporting. Provides API endpoints to invoke
Lambda functions. Only used if EnableS3O
bjectLambda is set to "No".

Amazon S3 Object Lambda Supporting. Provide S3 Origin to invoke
Lambda functions. Only used if EnableS3O
bjectLambda is set to "Yes".

AWS CDK Supporting. Provides infrastructure as code
constructs to generate the solution’s underlyin
g CloudFormation templates.

AWS CloudFormation Supporting. Deploys the solution’s underlying
AWS resources.

AWS Identity and Access Management (IAM) Supporting. Allows for fine-grained access
permissions.

Amazon Rekognition Optional. Uses machine learning (ML) to
analyze images.

AWS Secrets Manager Optional. Manages secrets to support URL
signatures.

AWS services in this solution 12

https://aws.amazon.com/lambda/
https://aws.amazon.com/s3/
https://aws.amazon.com/api-gateway/
https://aws.amazon.com/s3/features/object-lambda/
https://aws.amazon.com/cdk/
https://aws.amazon.com/cloudformation/
https://aws.amazon.com/iam/
https://aws.amazon.com/rekognition/
https://aws.amazon.com/secrets-manager/

Dynamic Image Transformation for Amazon CloudFront (Formerly known as
Serverless Image Handler)

Implementation Guide

Plan your deployment

This section describes the cost, security, quotas, and other considerations before deploying the
solution.

Supported AWS Regions

This solution uses AWS services that aren’t available in all AWS Regions. You must launch this
solution in an AWS Region where these services are available. For the current availability of AWS
services by Region, see the AWS Regional Services List.

This solution is available in the following AWS Regions:

Region name

US East (Ohio) Canada (Central)

US East (N. Virginia) China (Beijing)

US West (Northern California) China (Ningxia)

US West (Oregon) Europe (Frankfurt)

Africa (Cape Town) Europe (Ireland)

Asia Pacific (Hong Kong) Europe (London)

Asia Pacific (Mumbai) Europe (Milan)

Asia Pacific (Seoul) Europe (Paris)

Asia Pacific (Singapore) Europe (Stockholm)

Asia Pacific (Sydney) Middle East (Bahrain)

Asia Pacific (Tokyo) South America (São Paulo)

Supported AWS Regions 13

https://aws.amazon.com/about-aws/global-infrastructure/regional-product-services/

Dynamic Image Transformation for Amazon CloudFront (Formerly known as
Serverless Image Handler)

Implementation Guide

Opt-in Regions

An opt-in Region is an AWS Region that’s deactivated by default. You can activate opt-in Regions
can be activated in the AWS console. For additional information about opt-in Regions and how to
activate them, refer to Managing AWS Regions in the AWS General Reference guide.

This solution supports four opt-in Regions:

• Asia Pacific (Hong Kong)

• Middle East (Bahrain)

• Africa (Cape Town)

• Europe (Milan)

When launched in an opt-in Region, this solution creates an S3 logging bucket for CloudFront in
the US East (N. Virginia) Region. This is because CloudFront doesn’t deliver access logs to buckets
in the supported opt-in Regions. For more information about S3 buckets, refer to Choosing an
Amazon S3 bucket for your standard logs in the Amazon CloudFront Developer Guide.

To deploy in an opt-in Region, the S3 bucket(s) that you provide for the Source Buckets parameter
must be in the same Region where you launch the CloudFormation template.

Cost

You are responsible for the cost of the AWS services used while running this solution. As of this
revision, the cost for running the solution with the default settings in the US East (N. Virginia)
Region is approximately $5.30 per month for 100,000 new images, $22.51 per month for
1,000,000 new images, and $7.65 per month for 1,000,000 cached images (refer to the Sample
cost table for the cost breakdown). These estimates use information about image sizing and
lambda processing time from common use cases.

We recommend creating a budget through AWS Cost Explorer to help manage costs. Prices are
subject to change. For full details, see the pricing webpage for each AWS service used in this
solution.

Sample cost table

The following table provides a sample cost breakdown for deploying this solution with the default
parameters in the US East (N. Virginia) Region for one month.

Opt-in Regions 14

https://docs.aws.amazon.com/general/latest/gr/rande-manage.html
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/AccessLogs.html#access-logs-choosing-s3-bucket
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/AccessLogs.html#access-logs-choosing-s3-bucket
https://docs.aws.amazon.com/cost-management/latest/userguide/budgets-create.html
https://aws.amazon.com/aws-cost-management/aws-cost-explorer/

Dynamic Image Transformation for Amazon CloudFront (Formerly known as
Serverless Image Handler)

Implementation Guide

AWS service Dimensions Cost [USD]
(100,000 new
images)

Cost [USD]
(1,000,000 new
images)

Cost [USD]
(1,000,000
cached images)

Amazon API
Gateway *

 $0.35 $3.50 $0

Amazon S3
Object Lambda

upload 50
KB image per
request

$0.03 $0.25 $0

AWS Lambda 350 milliseconds
processing time
per image

$0.60 $6.03 $0

Amazon
CloudFront

transfer 50
KB image per
request

$0.42 $4.25 $4.25

AWS Secrets
Manager **

 $0.90 $5.40 $0.40

Amazon
CloudWatch
Dashboard ^

 $3.00 $3.00 $3.00

Amazon
CloudWatch
Logs

 $0.03 $0.33 $0.00

Total $5.30/$4.98 $22.51/$19.26 $7.65

* The cost for Amazon API Gateway is incurred only if Enable S3 Object Lambda is set to No. The cost
for Amazon S3 Object Lambda is incurred only if Enable S3 Object Lambda is set to Yes.

** The cost for AWS Secrets Manager is incurred only when the image URL signature feature is
activated.

Sample cost table 15

Dynamic Image Transformation for Amazon CloudFront (Formerly known as
Serverless Image Handler)

Implementation Guide

^ The operational dashboard included with the solution may fall under the free tier, refer to
CloudWatch pricing for the most up to date pricing information. For information on how to disable
the deployment of the operational dashboard, refer to Optional Mappings.

Demo UI

If you choose to deploy the demo UI, the solution automatically deploys an additional CloudFront
distribution and S3 bucket for storing the static website assets in your account. You are responsible
for the incurred variable charges from these services. For more information, see Amazon S3 pricing.

Image modification and analysis

This cost estimate doesn’t account for Amazon S3 PUT and GET requests, which can vary because
modified images are cached in CloudFront, and because certain use cases require special-use
capabilities such as smart cropping and content moderation with Amazon Rekognition. Using
Amazon Rekognition features may incur additional charges. For more information, see Amazon
Rekognition pricing.

There is no additional cost for using sharp, which is an open source library.

Security

When you build systems on AWS infrastructure, security responsibilities are shared between you
and AWS. This shared responsibility model reduces your operational burden because AWS operates,
manages, and controls the components including the host operating system, the virtualization
layer, and the physical security of the facilities in which the services operate. For more information
about AWS security, visit AWS Cloud Security.

Important

This solution creates CloudFront and API Gateway resources that are publicly accessible.
Be aware that while this is likely appropriate for publicly facing websites, it might not be
appropriate for all customer use cases for this solution.
AWS offers several options for end-to-end security, such as AWS Identity and Access
Management (IAM), Amazon Cognito user pools, AWS Certificate Manager, and CloudFront
signed URLs. For private image handling use cases, AWS recommends using CloudFront
signed URLs and implementing an API Gateway Lambda authorizer with CloudFront to
secure your stack.

Demo UI 16

https://aws.amazon.com/cloudwatch/pricing/
https://aws.amazon.com/s3/pricing/
https://aws.amazon.com/rekognition/pricing/
https://aws.amazon.com/rekognition/pricing/
https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/security/
https://aws.amazon.com/iam/
https://aws.amazon.com/iam/
https://docs.aws.amazon.com/cognito/latest/developerguide/getting-started-with-cognito-user-pools.html
https://aws.amazon.com/certificate-manager/
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/PrivateContent.html
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/PrivateContent.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/apigateway-use-lambda-authorizer

Dynamic Image Transformation for Amazon CloudFront (Formerly known as
Serverless Image Handler)

Implementation Guide

Demo UI

This solution optionally deploys a demo UI as a static website hosted in an S3 bucket. To help
reduce latency and improve security, this solution includes a CloudFront distribution with an origin
access identity, which is a CloudFront user that helps restrict access to the solution’s website S3
bucket contents. For more information, refer to Restricting access to an Amazon S3 origin in the
Amazon CloudFront Developer Guide.

IAM roles

IAM roles allow customers to assign granular access policies and permissions to services and users
on the AWS Cloud. This solution creates IAM roles that grant the solution’s Lambda functions
access to create Regional resources.

Amazon API Gateway

This solution deploys an Amazon API Gateway REST API and uses the default API endpoint and SSL
certificate. The default API endpoint supports TLSv1 security policy. It is recommended to use the
TLS_1_2 security policy to enforce TLSv1.2+ with your own custom domain name and custom SSL
certificate. For more information, refer to choosing a minimum TLS version for a custom domain in
API Gateway in the Amazon API Gateway Developer Guide.

API Gateway custom domains TLS

How to custom domains

Amazon CloudFront

This solution deploys a web console hosted in an Amazon S3 bucket. To help reduce latency and
improve security, this solution includes a CloudFront distribution with an origin access identity,
which is a CloudFront user that provides public access to the solution’s website bucket contents.
For more information, see Restricting access to an Amazon S3 origin in the Amazon CloudFront
Developer Guide.

Amazon CloudFront is deployed using the default CloudFront domain name and TLS certificate.
To use a later TLS version, use your own custom domain name and custom SSL certificate. For
more information, refer to using alternate domain names and HTTPS in the Amazon CloudFront
Developer Guide.

Demo UI 17

https://docs.aws.amazon.com/AmazonS3/latest/dev/WebsiteHosting.html
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/private-content-restricting-access-to-s3.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/apigateway-custom-domain-tls-version.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/how-to-custom-domains.html
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/private-content-restricting-access-to-s3.html
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html#DownloadDistValues-security-policy

Dynamic Image Transformation for Amazon CloudFront (Formerly known as
Serverless Image Handler)

Implementation Guide

Quotas

Service quotas, also referred to as limits, are the maximum number of service resources or
operations for your AWS account. Make sure you have sufficient quota for each of the services
implemented in this solution. For more information, see AWS service quotas.

Use the following links to go to the page for that service. To view the service quotas for all AWS
services in the documentation without switching pages, view the information in the Service
endpoints and quotas page in the PDF instead.

AWS CloudFormation quotas

Your AWS account has CloudFormation quotas that you should consider when launching the stack
for this solution. By understanding these quotas, you can avoid limitation errors that can prevent
you from deploying this solution successfully. For more information, see AWS CloudFormation
quotas in the in the AWS CloudFormation User Guide.

AWS Lambda quotas

Lambda has a 6 MB invocation payload request and response limit. For information about Lambda
quotas, including the amount of compute and storage resources that you can use to run and store
functions, refer to Lambda quotas in the AWS Lambda Developer Guide.

The default architecture for this solution does not support image responses larger than 6 MB, to
allow for this functionality, use the S3 Object Lambda architecture by setting the Enable S3 Object
Lambda template parameter to Yes. For more information, refer to Choosing an Architecture.

Amazon API Gateway quotas

API Gateway sets the maximum integration timeout at 30 seconds for all integration types,
including Lambda. Processing large image files can result in a timeout error due to the maximum
integration timeout being exceeded. For information about API Gateway quotas, refer to Amazon
API Gateway quotas and important notes in the Amazon API Gateway Developer Guide.

Optional Mappings

The following sections provide information surrounding optional features and how to disable
them. For each feature, use the following instructions.

Quotas 18

https://docs.aws.amazon.com/general/latest/gr/aws_service_limits.html
https://docs.aws.amazon.com/general/latest/gr/aws-general.pdf#aws-service-information
https://docs.aws.amazon.com/general/latest/gr/aws-general.pdf#aws-service-information
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cloudformation-limits.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cloudformation-limits.html
https://docs.aws.amazon.com/lambda/latest/dg/gettingstarted-limits.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/limits.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/limits.html

Dynamic Image Transformation for Amazon CloudFront (Formerly known as
Serverless Image Handler)

Implementation Guide

1. Download the dynamic-image-transformation-for-amazon-cloudfront.template
AWS CloudFormation template to your local hard drive.

2. Open the CloudFormation template with a text editor.

3. Locate the AWS CloudFormation template mapping section. It will be under the following
location:

Mappings:
 Solution:
 Config:

4. Follow the instructions in the section for the feature you would like to disable.

5. Save the template and launch or update your CloudFormation stack using this modified
template.

Operational Dashboard

The solution will deploy a Cloudwatch Dashboard for Solution Observability by default. This
dashboard allows you to see the following information about your Dynamic Image Transformation
for Amazon CloudFront deployment:

1. Lambda Errors

2. Lambda Duration

3. Lambda Invocations

4. CloudFront Requests

5. CloudFront Bytes Downloaded

6. Cache Hit Rate (% of requests to CloudFront which were returned from the cache)

7. Average Image Size

8. Estimated Cost (Based on us-east-1 pricing with a default deployment, doesn’t include cost of
observability)

Unless the dashboard is included in your AWS Free Tier, it will add a cost of $3 per month to your
Dynamic Image Transformation for Amazon CloudFront deployment. To prevent the inclusion of
the dashboard in your deployment, in combination with the instructions in Mappings, change the
value under DeployCloudWatchDashboard from "Yes", to "No".

Operational Dashboard 19

Dynamic Image Transformation for Amazon CloudFront (Formerly known as
Serverless Image Handler)

Implementation Guide

Sharp Size Limit

Sharp restricts the pixel size of input images to 268402689 by default (16383 ^ 2). To modify the
value the solution passes to sharp, in combination with the instructions in Mappings, modify the
value under SharpSizeLimit from "", to the pixel limit you choose, based on the following rules:

1. An empty string or a non-number string will use the existing default.

2. A value of "0" will remove the limit.

3. A positive integer value will set the limit to that value, for example, a mapping value of
"2500000" will cause the value passed to Sharp to be 2500000.

4. Negative and decimal values are not permitted, and may cause errors with image processing.

Sharp Size Limit 20

Dynamic Image Transformation for Amazon CloudFront (Formerly known as
Serverless Image Handler)

Implementation Guide

Deploy the solution

This solution uses CloudFormation templates and stacks to automate its deployment. The
CloudFormation template specifies the AWS resources included in this solution and their
properties. The CloudFormation stack provisions the resources that are described in the templates.

Before you launch the solution, review the cost, architecture, network security, and other
considerations discussed earlier in this guide.

Important

This solution includes an option to send anonymized operational metrics to AWS. We use
this data to better understand how customers use this solution and related services and
products. AWS owns the data gathered though this survey. Data collection is subject to the
AWS Privacy Notice.
To opt out of this feature, download the template, modify the AWS CloudFormation
mapping section, and then use the AWS CloudFormation console to upload your updated
template and deploy the solution. For more information, see the Anonymized data
collection section of this guide.

AWS CloudFormation template

You can download the CloudFormation template for this solution before deploying it.

dynamic-image-transformation-for-amazon-cloudfront.template - Use this template to launch
the solution and all associated components. The default configuration deploys CloudFront, API
Gateway, Lambda, CloudWatch and EventBridge. You can customize the template to meet your
specific needs.

Note

CloudFormation resources are created from AWS CDK constructs.

Before you launch the solution’s AWS CloudFormation template, you must specify an S3 bucket
in the Source Buckets template parameter. Use this S3 bucket to store the images that you want
to manipulate. If you have multiple image source S3 buckets, you can specify them as comma-

AWS CloudFormation template 21

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-whatis-concepts.html
https://aws.amazon.com/privacy/
https://solutions-reference.s3.amazonaws.com/dynamic-image-transformation-for-amazon-cloudfront/latest/dynamic-image-transformation-for-amazon-cloudfront.template

Dynamic Image Transformation for Amazon CloudFront (Formerly known as
Serverless Image Handler)

Implementation Guide

separated values. For lower latency, use an S3 bucket in the same AWS Region where you launch
your CloudFormation template. Additional cross-region data transfer costs may apply if the
solution is not deployed in the same AWS Region as the S3 bucket(s) provided in the Source
Buckets template parameter.

Note

If you are launching from a supported opt-in Region, the source S3 bucket you created and
provided as the Source Buckets template parameter must be in the same Region where
you’re launching the CloudFormation template.

We recommend deploying the optional demo UI when you first deploy the solution to test the
solution’s functionality. For more information, refer to Use the demo UI.

Note

If you have previously deployed this solution, see Update the solution for update
instructions.
Dynamic Image Transformation for Amazon CloudFront version 6.0 and newer include
significant changes, and you can’t update the solution from versions before 6.0 to
version 6.0 or later. To use version 6.0 or later, launch a new stack using version 6.x of the
CloudFormation template and uninstall your previous version of this solution.

Launch the stack

Follow the step-by-step instructions in this section to configure and deploy the solution into your
account.

Time to deploy: Approximately 15 minutes

1. Sign in to the AWS Management Console and select the button to launch the dynamic-image-
transformation-for-amazon-cloudfront AWS CloudFormation template.

2. Sign into AWS Management Console and select the button to launch dynamic-
image-transformation-for-amazon-cloudfront CloudFormation template.

Launch the stack 22

https://aws.amazon.com/console/
https://aws.amazon.com/console
https://console.aws.amazon.com/cloudformation/home?region=us-east-1#/stacks/new?stackName=DynamicImageTransformationForAmazonCloudFront&templateURL=https:%2F%2Fs3.amazonaws.com%2Fsolutions-reference%2Fdynamic-image-transformation-for-amazon-cloudfront%2Flatest%2Fdynamic-image-transformation-for-amazon-cloudfront.template&redirectId=ImplementationGuide

Dynamic Image Transformation for Amazon CloudFront (Formerly known as
Serverless Image Handler)

Implementation Guide

3. The template launches in the US East (N. Virginia) Region by default. To launch the solution in a
different AWS Region, use the Region selector in the console navigation bar. For a list of which
AWS Regions support this solution, see Supported AWS Regions.

4. On the Create stack page, verify that the correct template URL is in the Amazon S3 URL text
box and choose Next.

5. On the Specify stack details page, assign a name to your solution stack. For information about
naming character limitations, see IAM and AWS STS quotas in the AWS Identity and Access
Management User Guide.

6. Under Parameters, review the parameters for this solution template and modify them as
necessary. This solution uses the following default values.

Parameter Default Description

CORS Enabled No Choose whether to activate
CORS. For information about
this parameter, refer to
Cross-origin resource sharing
(CORS).

CORS Origin * This value is returned by
the API in the Access-Co
ntrol-Allow-Origin header.
An asterisk value supports
any origin. We recommend
specifying a specific origin
(Ex: http://example.domain)
to restrict cross-site access to
your API.

Note: This value is ignored if
CORS_ENABLED is set to No.

Source Buckets <Requires input> Specifies the S3 bucket (or
buckets) in your account that
contain(s) the images that
you manipulate. To specify

Launch the stack 23

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_iam-limits.html
http://example.domain

Dynamic Image Transformation for Amazon CloudFront (Formerly known as
Serverless Image Handler)

Implementation Guide

Parameter Default Description

multiple buckets, separate
them by commas.

Enable S3 Object Lambda No Determines which
component to use to use as
the CloudFront distribution
origin. No uses API gateway,
Yes uses an S3 Object
Lambda Access Point, which
supports images larger than
the existing 6 MB size limit.
Only the origin in use will be
created by the template.

Deploy Demo UI Yes The demo UI that deploys
to the Demo S3 bucket. For
more information refer to
Use the demo UI.

Log Retention Period 180 Specifies the number of days
to retain Lambda log data in
CloudWatch logs.

Enable Signature No Choose whether to activate
the image URL signature
feature. For information
about this feature, refer to
Image URL signature.

Launch the stack 24

Dynamic Image Transformation for Amazon CloudFront (Formerly known as
Serverless Image Handler)

Implementation Guide

Parameter Default Description

SecretsManager Secret <Optional input> Define the Secrets Manager
secret name that contains
the secret key for the image
URL signature.

Note: This value is ignored
if the Enable Signature
 parameter is set to No.

SecretsManager Key <Optional input> Define the Secrets Manager
secret key that contains the
secret value to create the
image URL signature.

Note: This value is ignored
if the Enable Signature
 parameter is set to No.

Enable Default Fallback
Image

No Choose whether to activate
the default fallback image
feature. For information
about this feature, refer to
Default fallback image.

Fallback Image S3 Bucket <Optional input> Specify the S3 bucket which
contains the default fallback
image.

Note: This value is ignored if
the Enable Default Fallback
Image parameter is set to
No.

Launch the stack 25

Dynamic Image Transformation for Amazon CloudFront (Formerly known as
Serverless Image Handler)

Implementation Guide

Parameter Default Description

Fallback Image S3 Key <Optional input> Specify the default fallback
image S3 object key,
including prefix. See Creating
object key names for more
information.

Note: This value is ignored if
the Enable Default Fallback
Image parameter is set to
No.

AutoWebP No Choose whether to
automatically convert
responses to the WebP
image formats if the Accept
request header allows it.

Origin Shield Region Disabled The Region to set up the
Origin Shield caching layer
for the CloudFront distribut
ion. May result in a better
cache hit ratio, as well as
lower latency on repeat
requests in new regions.
For more information on
choosing an Origin Shield
region, see the Amazon
CloudFront Developer Guide.

CloudFront PriceClass PriceClass_All The CloudFront price class
to use. For more informati
on, refer to Choosing the
price class for a CloudFront
distribution in the Amazon
CloudFront Developer Guide.

Launch the stack 26

https://docs.aws.amazon.com/AmazonS3/latest/userguide/object-keys.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/object-keys.html
https://developers.google.com/speed/webp
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/origin-shield.html
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/origin-shield.html
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/PriceClass.html
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/PriceClass.html
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/PriceClass.html

Dynamic Image Transformation for Amazon CloudFront (Formerly known as
Serverless Image Handler)

Implementation Guide

Parameter Default Description

Use Existing CloudFront
Distribution

No Choose whether to deploy
the solution in a way that
it can be attached to an
existing CloudFront distribut
ion. If No is selected, a
CloudFront distribution
will be created for you.
If you have selected Yes,
manual action will need
to be performed to finish
the attachment, refer
to Attaching an Existing
CloudFront distribution for
more information.

Existing CloudFront
Distribution ID

<Optional Input> The Distribution ID for the
existing CloudFront distribut
ion being attached to.
This field is required if Use
Existing CloudFront Distribut
ion is set to Yes, and will be
used to set up IAM permissio
ns, metrics, and CloudForm
ation template outputs.

Note: This value is ignored
if Use Existing CloudFront
Distribution is set to No.

7. Choose Next.

8. On the Configure stack options page, choose Next.

9. On the Review and create page, review and confirm the settings. Select the box acknowledging
that the template creates IAM resources.

10.Choose Submit to deploy the stack.

Launch the stack 27

Dynamic Image Transformation for Amazon CloudFront (Formerly known as
Serverless Image Handler)

Implementation Guide

You can view the status of the stack in the AWS CloudFormation console in the Status column.
You should receive a CREATE_COMPLETE status in approximately 15 minutes.

Attaching an existing CloudFront distribution

If you’ve deployed your stack and have set the Use Existing CloudFront Distribution template
parameter to Yes, use the following instructions to complete your setup.

Note

In the following instructions, UUID is used to reference the deployment UUID of your
Dynamic Image Transformation for Amazon CloudFront stack. You can find this value by
inspecting the Physical ID of a AWS::CloudFront::Function deployed in your stack, and
extracting the value found after the word modifier-.
Whether you are using the API Gateway architecture or S3 Object Lambda architecture
is determined by the value of the Enable S3 Object Lambda template parameter in
your CloudFormation stack (Yes = S3 Object Lambda architecture, No = API Gateway
architecture). You can ignore any instructions that are for the opposite architecture type.

Setting the Origin

1. In the CloudFront console, navigate to the distribution you indicated in the Existing CloudFront
Distribution ID template parameter.

2. Select the Origins tab and click Create origin.

3. For the API Gateway architecture, set the Origin domain as the API Gateway execution link. This
value can be found by placing the Physical ID of the stack’s AWS::ApiGateway::RestApi in the
search field and selecting LambdaRestApi under API Gateway.

4. For the S3 Object Lambda architecture, set the Origin domain as the Object Lambda Access
Point alias, this value will begin with sih-olap-{UUID_11}, where UUID_11 is the first 11
characters of your UUID.

5. Leaving other values as their default, set the Origin path to /image.

6. For the S3 Object Lambda architecture, set the Origin access control to the deployed value for
your stack. This value will be equal to SIH-origin-access-control-${UUID}

7. Select Create origin.

Attaching an existing CloudFront distribution 28

Dynamic Image Transformation for Amazon CloudFront (Formerly known as
Serverless Image Handler)

Implementation Guide

Setting the behavior

1. In the CloudFront console, navigate to the distribution you indicated in the Existing CloudFront
Distribution ID template parameter.

2. Select the Behaviors tab and choose Create behavior

3. Set the Path pattern you’d like to point to your solution instance, in a Solution created
distribution, this is Default (*)

4. Set the Origin to the Origin created in the previous section.

5. Set the Viewer Protocol policy to Redirect HTTP to HTTPS

6. Set the Cache Policy to the one named ServerlessImageHandler-${UUID}.

7. Set the Origin request policy to the one named ServerlessImageHandler-${UUID}.

8. For the API Gateway Architecture, set the Viewer request Function type to CloudFront Functions,
and the Function ARN to the one named sih-apig-request-modifier-${UUID}.

9. For the Object Lambda Architecture, set the Viewer request Function type to CloudFront
Functions, and the Function ARN to the one named sih-ol-request-modifier-${UUID}. As
well, set the Viewer response Function type to CloudFront Functions, and the Function ARN to
the one named sih-ol-response-modifier-${UUID}.

10.Select Create behavior.

Attaching an existing CloudFront distribution 29

Dynamic Image Transformation for Amazon CloudFront (Formerly known as
Serverless Image Handler)

Implementation Guide

Update the solution

If you have previously deployed the solution, follow this procedure to update the CloudFormation
stack to get the latest version of the solution’s framework.

Important

Dynamic Image Transformation for Amazon CloudFront version 6.0 and newer include
significant changes, and you can’t update the solution from versions prior to 6.0 to
version 6.0 or later. To use version 6.0 or later, launch a new stack using version 6.x of the
CloudFormation template and uninstall your previous version of this solution.
Modifying the architecture of an existing deployment by changing the value of the Enable
S3 Object Lambda template parameter will cause a deletion and recreation of the
CloudFront distribution associated with the deployment. This recreation will result in
a new API endpoint URL and an empty cache. For information on a workaround to use
an alternate architecture type while maintaining the current endpoint URL and cache,
refer to the instructions on maintaining the existing endpoint and cache when modifying
architecture type.

1. Sign in to the AWS CloudFormation console, select your existing Dynamic Image Transformation
for Amazon CloudFront CloudFormation stack, and select Update.

2. Select Replace current template.

3. Under Specify template:

a. Select Amazon S3 URL.

b. Copy the link of the dynamic-image-transformation-for-amazon-
cloudfront.template AWS CloudFormation template.

c. Paste the link in the Amazon S3 URL box.

d. This link will point to the latest template by default, to modify which version you update to,
replace the word latest with the desired version.

i. For example: https://solutions-reference.s3.amazonaws.com/dynamic-
image-transformation-for-amazon-cloudfront/latest/dynamic-image-
transformation-for-amazon-cloudfront.template would become https://
solutions-reference.s3.amazonaws.com/dynamic-image-transformation-

30

https://console.aws.amazon.com/cloudformation/
https://solutions-reference.s3.amazonaws.com/dynamic-image-transformation-for-amazon-cloudfront/latest/dynamic-image-transformation-for-amazon-cloudfront.template
https://solutions-reference.s3.amazonaws.com/dynamic-image-transformation-for-amazon-cloudfront/latest/dynamic-image-transformation-for-amazon-cloudfront.template
https://solutions-reference.s3.amazonaws.com/dynamic-image-transformation-for-amazon-cloudfront/latest/dynamic-image-transformation-for-amazon-cloudfront.template
https://solutions-reference.s3.amazonaws.com/dynamic-image-transformation-for-amazon-cloudfront/v7.0.0/dynamic-image-transformation-for-amazon-cloudfront.template
https://solutions-reference.s3.amazonaws.com/dynamic-image-transformation-for-amazon-cloudfront/v7.0.0/dynamic-image-transformation-for-amazon-cloudfront.template

Dynamic Image Transformation for Amazon CloudFront (Formerly known as
Serverless Image Handler)

Implementation Guide

for-amazon-cloudfront/v7.0.0/dynamic-image-transformation-for-
amazon-cloudfront.template

Note

Alongside the rename in v7.0.0 from Serverless Image Handler to Dynamic Image
Transformation for Amazon CloudFront, the location of the cloudformation template has
changed, if you’d like to follow the above instructions for a version before v7.0.0, use the
following template URL as a baseline: https://solutions-reference.s3.amazonaws.com/
serverless-image-handler/latest/serverless-image-handler.template

a. Verify that the correct template URL shows in the *Amazon S3 URL* text box, and choose Next.
Choose Next again.

1. Under Parameters, review the parameters for the template and modify them as necessary.
For details about the parameters, see Deployment process overview.

2. Choose Next.

3. On the Configure stack options page, choose Next.

4. On the Review page, review and confirm the settings. Select the box acknowledging that the
template creates IAM resources.

5. Choose View change set and verify the changes.

6. Choose Update stack to deploy the stack.

You can view the status of the stack in the AWS CloudFormation console in the Status column. You
should receive an UPDATE_COMPLETE status in approximately 15 minutes.

Backward compatibility

This solution is compatible with legacy image request formats, including the Thumbor and Custom
(with rewrite function) formats from previous versions of this solution. If you are using a previous
version of this solution (version 3.x and earlier) and have image requests formatted for use with
that version, review the following note to ensure minimal breaking changes or parities.

Backward compatibility 31

https://solutions-reference.s3.amazonaws.com/dynamic-image-transformation-for-amazon-cloudfront/v7.0.0/dynamic-image-transformation-for-amazon-cloudfront.template
https://solutions-reference.s3.amazonaws.com/dynamic-image-transformation-for-amazon-cloudfront/v7.0.0/dynamic-image-transformation-for-amazon-cloudfront.template
https://solutions-reference.s3.amazonaws.com/serverless-image-handler/latest/serverless-image-handler.template
https://solutions-reference.s3.amazonaws.com/serverless-image-handler/latest/serverless-image-handler.template

Dynamic Image Transformation for Amazon CloudFront (Formerly known as
Serverless Image Handler)

Implementation Guide

Note

Legacy requests (Thumbor and custom) will source images from the first bucket in the
SOURCE_BUCKETS environment variable by default. To use a different bucket, you can
use the s3:BucketName tag in your request or you can adjust which bucket is first in the
environment variables section of your image handler Lambda function. See Using AWS
Lambda environment variables in the AWS Lambda Developer Guide for more information.

Thumbor compatibility

You can specify Thumbor image requests as you normally would, with filters and other relevant
properties added on as suffixes to the default CloudFront ApiEndpoint. For more information
about using Thumbor, see List of supported Thumbor filters.

Note

Dynamic Image Transformation for Amazon CloudFront includes a Thumbor-style interface
in the API; however, those requests are mapped to comparable Sharp library calls, and
might not include all available Thumbor filters. For more information about available
Thumbor-style filters, see List of supported Thumbor filters.

Custom compatibility

You can specify custom image requests that used the version 3.x and earlier solution versions'
rewrite feature as you normally would. First, you must update the REWRITE_MATCH_PATTERN
and REWRITE_SUBSTITUTION environment variables for your image handler function with the
appropriate (JavaScript/ECMAScript-compatible) regular expressions and strings. For example:

https://<distName>.cloudfront.net/<customRequestHere>

For more information about using custom image requests, see Custom image requests.

Thumbor compatibility 32

https://docs.aws.amazon.com/lambda/latest/dg/configuration-envvars.html
https://docs.aws.amazon.com/lambda/latest/dg/configuration-envvars.html

Dynamic Image Transformation for Amazon CloudFront (Formerly known as
Serverless Image Handler)

Implementation Guide

Maintain existing endpoint and cache when modifying architecture
type

With the release of the Object Lambda architecture, customers have the ability to enable
an architecture which supports larger images. Modifying an existing distribution to use this
architecture will cause a deletion and recreation of the CloudFront distribution associated with
the deployment. This will result in a change to the domain name, as well as the cache being
cleared. The following workaround can be used to modify the architecture type while avoiding this
deletion.

Note

This workaround is not officially supported, and may run into instability. This workaround
requires that both stacks are maintained in order to maintain functionality. Any updates
to the original stack may undo some of the changes performed here. You may experience
downtime

1. Follow the process for deploying a new Dynamic Image Transformation for Amazon CloudFront
stack. Refer to deploy the solution for additional guidance on this step.

2. Modify the Enable S3 Object Lambda template parameter to select your desired architecture.

3. Set Use Existing CloudFront Distribution to Yes

4. Set Existing CloudFront Distribution Id to the ID of the Image Handler distribution for your
existing stack.

5. Set the remaining template parameters to the same values used in the original deployment.

6. Deploy the stack.

7. Upon completion of the deployment, follow the instructions in Attaching an Existing CloudFront
distribution to attach the CloudFront distribution referenced to the newly deployed resources.
This will require that you overwrite the existing values on the distribution.

Maintain existing endpoint and cache when modifying architecture type 33

Dynamic Image Transformation for Amazon CloudFront (Formerly known as
Serverless Image Handler)

Implementation Guide

Troubleshooting

If you need help with this solution, contact AWS Support to open a support case for this solution.

Contact AWS Support

If you have AWS Developer Support, AWS Business Support, or AWS Enterprise Support, you can
use the Support Center to get expert assistance with this solution. The following sections provide
instructions.

Create case

1. Sign in to Support Center.

2. Choose Create case.

How can we help?

1. Choose Technical.

2. For Service, select Solutions.

3. For Category, select Other Solutions.

4. For Severity, select the option that best matches your use case.

5. When you enter the Service, Category, and Severity, the interface populates links to common
troubleshooting questions. If you can’t resolve your question with these links, choose Next step:
Additional information.

Additional information

1. For Subject, enter text summarizing your question or issue.

2. For Description, describe the issue in detail.

3. Choose Attach files.

4. Attach the information that AWS Support needs to process the request.

Contact AWS Support 34

https://aws.amazon.com/premiumsupport/plans/developers/
https://aws.amazon.com/premiumsupport/plans/business/
https://aws.amazon.com/premiumsupport/plans/enterprise/
https://support.console.aws.amazon.com/support/home#/

Dynamic Image Transformation for Amazon CloudFront (Formerly known as
Serverless Image Handler)

Implementation Guide

Help us resolve your case faster

1. Enter the requested information.

2. Choose Next step: Solve now or contact us.

Solve now or contact us

1. Review the Solve now solutions.

2. If you can’t resolve your issue with these solutions, choose Contact us, enter the requested
information, and choose Submit.

Help us resolve your case faster 35

Dynamic Image Transformation for Amazon CloudFront (Formerly known as
Serverless Image Handler)

Implementation Guide

Uninstall the solution

You can uninstall the solution from the AWS Management Console or by using the AWS Command
Line Interface (AWS CLI). You must manually delete the S3 buckets created by this solution. AWS
solutions don’t automatically delete these resources in case you have stored data to retain.

Using the AWS Management Console

1. Sign in to the AWS CloudFormation console.

2. On the Stacks page, select this solution’s installation stack.

3. Choose Delete.

Using AWS Command Line Interface

Determine whether the AWS CLI is available in your environment. For installation instructions, see
What Is the AWS Command Line Interface? in the AWS CLI User Guide. After confirming that the
AWS CLI is available, run the following command.

$ aws cloudformation delete-stack --stack-name <installation-stack-name>

Deleting the Amazon S3 buckets

This solution is configured to retain the solution-created S3 buckets if you decide to delete the
AWS CloudFormation stack to prevent accidental data loss. After uninstalling the solution, you can
manually delete this S3 bucket if you don’t need to retain the data. Follow these steps to delete
the Amazon S3 buckets.

1. Sign in to the Amazon S3 console.

2. Choose Buckets from the left navigation pane.

3. Locate the <stack-name> S3 buckets.

4. Select the S3 bucket and choose Delete.

To delete the S3 bucket using AWS CLI, run the following command:

Using the AWS Management Console 36

https://aws.amazon.com/console/
https://aws.amazon.com/cli/
https://aws.amazon.com/cli/
https://console.aws.amazon.com/cloudformation/home?
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-welcome.html
https://console.aws.amazon.com/s3/home

Dynamic Image Transformation for Amazon CloudFront (Formerly known as
Serverless Image Handler)

Implementation Guide

$ aws s3 rb s3://<bucket-name> --force

Alternatively, you can configure the CloudFormation template to delete the Amazon S3 bucket
automatically. Before deleting the stack, change the deletion behavior in the CloudFormation
DeletionPolicy attribute.

Note

Neither of these methods deletes the source bucket you created and provided as a
parameter to the CloudFormation template.

Deleting the Amazon S3 buckets 37

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-attribute-deletionpolicy.html

Dynamic Image Transformation for Amazon CloudFront (Formerly known as
Serverless Image Handler)

Implementation Guide

Use the solution

This section provides a user guide for utilizing the AWS solution.

Use the demo UI

The solution provides an optional demo UI that you can deploy into your AWS account to display
basic capability and functionality. With this UI, you can interact directly with the new image
handler using images from the specified Amazon S3 buckets in your account.

Screenshot of demo UI showing image source, original image, editing options, preview, code,
and encoded URL.

Follow this procedure to experiment with the supported image editing features, preview the
results, and create example URLs that you can use in your applications:

1. Sign in to the AWS CloudFormation console.

2. Select the solution’s installation stack.

3. Choose the Outputs tab, and then select value for the DemoUrl key. The Dynamic Image
Transformation for Amazon CloudFront Demo UI opens in your browser.

4. In the Image Source card, perform the following actions:

a. Specify a bucket name to use for the demo. The bucket you specify must be listed in the
SOURCE_BUCKETS environment variable of the AWS Lambda function.

Use the demo UI 38

https://console.aws.amazon.com/cloudformation/

Dynamic Image Transformation for Amazon CloudFront (Formerly known as
Serverless Image Handler)

Implementation Guide

b. Specify an image key to use for the demo. You must include the file extension in the key.

5. Select Import. The original image appears in the Original Image card.

6. In the Editor card, adjust the image settings, and select Preview to generate the modified
image. You can select Reset to revert the settings back to their original values.

Note

The Dynamic Image Transformation for Amazon CloudFront demo UI offers a limited set of
image edits and doesn’t include the full scope of capabilities offered by the Image Handler
API and the image URL signature. We recommended using your own frontend application
for image modification.

Use the solution with a frontend application

In your frontend application, you can access both the original and modified images by creating
an image request object, stringifying and encoding that object, and appending it to the API call.
Follow these steps to retrieve your API endpoint for the solution:

1. Sign in to the AWS CloudFormation console.

2. On the Stacks page, select this solution’s installation stack.

3. Choose the Outputs tab. The domain name appears as the value for the ApiEndpoint key. This
URL is the endpoint URL for your newly provisioned image handler API.

To use the solution with your frontend application, use the following example syntax for the API
call:

https://<ApiEndpoint>/<encodedRequest>

Create and use image requests

This solution generates a CloudFront domain name that gives you access to both original and
modified images through the image handler API. You can specify parameters such as the image’s
location and edits to be made in a JSON object on the frontend.

Use the solution with a frontend application 39

https://console.aws.amazon.com/cloudformation/home?

Dynamic Image Transformation for Amazon CloudFront (Formerly known as
Serverless Image Handler)

Implementation Guide

Follow these step-by-step instructions to create image requests:

Note

The following image formats are supported for modifications: JPG/JPEG, PNG, TIFF/TIF,
WEBP, GIF and 8-bit AVIF. For retrieval, the following formats are supported: All those
listed previously, as well as AVIF (all bit depths) and SVG. Edited SVG files will be converted
to .png by default.

1. Retrieve your API endpoint for the solution. Refer to Use the solution with a frontend
application for instructions.

2. In a code sandbox, or in your frontend application, create a new imageRequest JSON object.
This object contains the key-value pairs needed to successfully retrieve and perform edits
on your images. Using the following code sample and the sharp documentation, adjust the
following properties to meet your image editing requirements.

• Bucket - Specify the S3 bucket containing your original image file. This is the name that’s
specified in the SourceBuckets template parameter. You can update the image location by
adding it into the SOURCE_BUCKETS environment variable of your image handler Lambda
function. See Using AWS Lambda environment variables in the AWS Lambda Developer Guide
for more information.

• Key - Specify the filename of your original image. This name should include the file extension
and subfolders between its location and the root of the bucket. For example, folder1/
folder2/image.jpeg.

• Edits - Specify image edits as key-value pairs. If you don’t specify image edits, the original
image returns with no changes made.

For example, the following code block specifies the image location as myImageBucket and
specifies edits of grayscale: true to change the image to grayscale:

const imageRequest = JSON.stringify({
 bucket: "<myImageBucket>",
 key: "<myImage.jpeg>",
 edits: {
 grayscale: true
 }

Create and use image requests 40

https://sharp.pixelplumbing.com/
https://docs.aws.amazon.com/lambda/latest/dg/configuration-envvars.html

Dynamic Image Transformation for Amazon CloudFront (Formerly known as
Serverless Image Handler)

Implementation Guide

})

1. Stringify the JSON request object. For example:

const stringifiedObject = JSON.stringify(<myObject>);

2. Base64 encode the JSON string. For example:

const encodedObject = btoa(<stringifiedObject>);

3. Append the encoded string onto the CloudFront URL. For example:

const url = '${<ApiEndpoint>}/${<encodedObject>}';

4. Use that URL either in the JavaScript as part of a GET request, or in the frontend as part of an
HTML img tag’s src property.

For information regarding how to use additional features in an image request, refer to Dynamically
resize photos, Use smart cropping, Use round cropping, and Activate and use content moderation.
For additional features supported by sharp, refer to the sharp documentation.

Note

The following filters are not supported for multi-page GIF images due to limitations in the
underlying libraries: rotate, smartCrop, roundCrop, and contentModeration.

Dynamically resize photos

This solution offers the following fit options to dynamically resize an image: cover, contain,
fill, inside, and outside. Refer to the sharp documentation for a description of each fit. For
example:

const imageRequest = JSON.stringify({
 bucket: "<myImageBucket>",
 key: "<myImage.jpeg>",
 edits: {
 resize: {
 width: 200,

Dynamically resize photos 41

https://sharp.pixelplumbing.com/
https://sharp.pixelplumbing.com/api-resize

Dynamic Image Transformation for Amazon CloudFront (Formerly known as
Serverless Image Handler)

Implementation Guide

 height: 250,
 fit: "cover"
 }
 }
})

If you use contain as the resize fit mode, you can specify the color of the fill by providing the hex
code of the color you want to use. For example:

const imageRequest = JSON.stringify({
 bucket: "<myImageBucket>",
 key: "<myImage.jpeg>",
 edits: {
 resize: {
 width: 200,
 height: 250,
 fit: "contain",
 background: {
 r: 255,
 g: 0,
 b: 0,
 alpha: 1
 }
 }
 }
})

Edit images

You can use this solution to edit your images, such as rotating them or changing the coloring to
negative. Refer to the sharp documentation for a description of each operation. For example, to
produce a negative of an image, enter the following:

const imageRequest = JSON.stringify({
 bucket: "<myImageBucket>",
 key: "<myImage.jpeg>",
 edits: {
 negate: true
 }
})

Edit images 42

https://sharp.pixelplumbing.com/api-operation

Dynamic Image Transformation for Amazon CloudFront (Formerly known as
Serverless Image Handler)

Implementation Guide

Restricted operations

Certain Sharp operations are restricted by the solution to help enhance security. This includes (but
may not be limited to):

• clone

• metadata

• stats

• composite (Though this is permitted through the use of overlayWith)

• certain output options (Including toFile, toBuffer, tile and raw)

For an exact list of allow-listed Sharp operations, you can visit constants.ts on the Solution GitHub
repository.

Use smart cropping

This solution uses Amazon Rekognition for face detection in images submitted for smart cropping.
To activate smart cropping on an image, add the smartCrop property to the edits property in the
image request.

• smartCrop(optional, boolean || object) - Activates the smart cropping feature for an original
image. If the value is true, then the feature returns the first face detected from the original
image with no additional options. For example:

const imageRequest = JSON.stringify({
 bucket: "<myImageBucket>",
 key: "<myImage.jpeg>",
 edits: {
 smartCrop: true
 }
})

The following smartCrop variables are shown in the following code sample:

smartCrop.faceIndex(optional, number) - Specifies which face to focus on if multiple are
present within an original image. The solution indexes detected faces in a zero-based array from
the largest detected face to the smallest. If this value isn’t specified, Amazon Rekognition returns
the largest face detected from the original image. smartCrop.padding(optional, number) -

Use smart cropping 43

https://sharp.pixelplumbing.com/api-output
https://github.com/aws-solutions/serverless-image-handler/blob/main/source/image-handler/lib/constants.ts

Dynamic Image Transformation for Amazon CloudFront (Formerly known as
Serverless Image Handler)

Implementation Guide

Specifies an amount of padding in pixels to add around the cropped image. The solution applies
the padding value to all sides of the cropped image.

const imageRequest = JSON.stringify({
 bucket: "<myImageBucket>",
 key: "<myImage.jpeg>",
 edits: {
 smartCrop: {
 faceIndex: 1, // zero-based index of detected faces
 padding: 40, // padding expressed in pixels, applied to all sides
 }
 }
})

Note

smartCrop is not supported for animated (such as, GIF) images.

Use round cropping

This solution can crop images in a circular pattern. To activate round cropping on an image, add the
roundCrop property to the edits property in the image request.

• roundCrop(optional, boolean || object) - Activates the round cropping feature for an original
image. If the value is true, then the feature returns a circular cropped image that’s centered from
the original image and has a diameter of the smallest edge of the original image. For example:

const imageRequest = JSON.stringify({
 bucket: "<myImageBucket>",
 key: "<myImage.jpeg>",
 edits: {
 roundCrop: true
 }
})

The following roundCrop variables are shown in the following code sample:

Use round cropping 44

Dynamic Image Transformation for Amazon CloudFront (Formerly known as
Serverless Image Handler)

Implementation Guide

roundCrop.rx (optional, number) - Specifies the radius along the x-axis of the ellipse. If a value
isn’t provided, the image handler defaults to a value that’s half the length of the smallest edge.
roundCrop.ry (optional, number) - Specifies the radius along the y-axis of the ellipse. If a value
isn’t provided, the image handler defaults to a value that’s half the length of the smallest edge.
roundCrop.top(optional, number) - Specifies the offset from the top of the original image to
place the center of the ellipse. If a value isn’t provided, the image handler defaults to a value
that’s half of the height. roundCrop.left (optional, number) - Specifies the offset from the left-
most edge of the original image to place the center of the ellipse. If a value isn’t provided, the
image handler defaults to a value that’s half of the width.

const imageRequest = JSON.stringify({
 bucket: "<myImageBucket>",
 key: "<myImage.jpeg>",
 edits: {
 roundCrop: {
 rx: 30, // x-axis radius
 ry: 20, // y-axis radius
 top: 300, // offset from top edge of original image
 left: 500 // offset from left edge of original image
 }
 }
})

Note

roundCrop is not supported for animated (such as, GIF) images.

Overlay an image

This solution can overlay images on top of others, for cases like watermarking copyrighted image.
To overlay an image, add the overlayWith property to the edits property in the image request.

overlayWith(optional, object) - Overlays an image on top of the original. For example:

const imageRequest = JSON.stringify({
 bucket: "<myImageBucket>",
 key: "<myImage.jpeg>",

Overlay an image 45

Dynamic Image Transformation for Amazon CloudFront (Formerly known as
Serverless Image Handler)

Implementation Guide

 edits: {
 overlayWith: {
 bucket: "<myImageBucket>",
 key: "<myOverlayImage.jpeg>",
 alpha: 0-100, // Opaque (0) to Transparent (100)
 wRatio: 0-100, // Ratio of the underlying image that the overlay width should
 be
 hRatio: 0-100, // Ratio of the underlying image that the overlay height should
 be
 options: {
 top: "-10p",
 left: 150
 }
 }
 }
})

The following overlayWith variables are shown in the previous code sample:

• overlayWith.bucket (required, string) - Specifies the bucket that the overlay image should be
retrieved from. This bucket must be present in the SOURCE_BUCKETS parameter.

• overlayWith.key (required, string) - Specifies the object key that is used for the overlay image.

• overlayWith.alpha (optional, number) - Specifies the opacity that should be used for the
overlay image. This can be set from 0 (fully opaque) and 100 (fully transparent).

• overlayWith.wRatio (required, number) - Specifies the percentage of the width of underlying
image that the overlay image should be sized to. This can be set from 0 and 100, where 100
indicates that the overlay image has the same width as the underlying image.

• overlayWith.hRatio (required, number) - Specifies the percentage of the height of underlying
image that the overlay image should be sized to. This can be set from 0 and 100, where 100
indicates that the overlay image has the same height as the underlying image.

• overlayWith.options.top (optional, number | string) - Specifies the distance in pixels from the
top edge of the underlying photo that the overlay should be placed. A number formatted as a
string with a p at the end is treated as a percentage.

• overlayWith.options.left (optional, number | string) - Specifies the distance in pixels from the
left edge of the underlying photo that the overlay should be placed. A number formatted as a
string with a p at the end is treated as a percentage.

Overlay an image 46

Dynamic Image Transformation for Amazon CloudFront (Formerly known as
Serverless Image Handler)

Implementation Guide

Note

overlayWith is not fully supported for animated (such as, GIF) images. Instead, only the
first frame will receive an overlay.

Overwrite animated status

This solution assumes that GIF files with multiple pages should be animated. If you’d like to
indicate that a GIF should not be animated, or that another file type should be animated, include
the animated property in the edits property in the image request.

• animated (optional, boolean) - Overwrites the initial animated status of the image. If the value
is true , the solution will attempt to process the image as animated. For example:

const imageRequest = JSON.stringify({
 bucket: "<myImageBucket>",
 key: "<myImage.webp>",
 edits: {
 animated: true
 }
})

If it is false, the solution will process the image as a still image. For example:

const imageRequest = JSON.stringify({
 bucket: "<myImageBucket>",
 key: "<myImage.gif>",
 edits: {
 animated: false
 }
})

Note

If an image does not have multiple pages, it will always be processed as still, regardless of
the edits.animated property. The following filters are not supported for images that are
animated: rotate, smartCrop, roundCrop, and contentModeration.

Overwrite animated status 47

Dynamic Image Transformation for Amazon CloudFront (Formerly known as
Serverless Image Handler)

Implementation Guide

Activate and use content moderation

This solution can detect inappropriate content using Amazon Rekognition. To activate content
moderation, add the contentModeration property to the edits property in the image request.

• contentModeration (optional, boolean || object) - Activates the content moderation feature
for an original image. If the value is true, then the feature detects inappropriate content
using Amazon Rekognition with a minimum confidence that’s set higher than 75%. If Amazon
Rekognition finds inappropriate content, the solution blurs the image. For example:

const imageRequest = JSON.stringify({
 bucket: "<myImageBucket>",
 key: "<myImage.jpeg>",
 edits: {
 contentModeration: true
 }
})

The following contentModeration variables are shown in the following code sample:

• contentModeration.minConfidence (optional, number) - Specifies the minimum confidence
level for Amazon Rekognition to use. Amazon Rekognition only returns detected content that’s
higher than the minimum confidence. If a value isn’t provided, the default value is set to 75%.

• contentModeration.blur (optional, number) - Specifies the intensity level that an image is
blurred if inappropriate content is found. The number represents the sigma of the Gaussian
mask, where sigma = 1 + radius /2. For more information, refer to the sharp documentation. If a
value isn’t provided, the default value is set to 50.

• contentModeration.moderationLabels (optional, array) - Identifies the specific content to
search for. The image is blurred only if Amazon Rekognition locates the content specified
in the smartCrop.moderationLabels provided. You can use either a top-level category or a
second-level category. Top-level categories include its associated second-level categories. For
more information about moderation label options, refer to Content moderation in the Amazon
Rekognition Developer Guide.

const imageRequest = JSON.stringify({
 bucket: "<myImageBucket>",
 key: "<myImage.jpeg>",
 edits: {
 contentModeration: {

Activate and use content moderation 48

https://sharp.pixelplumbing.com/api-operation#blur
https://docs.aws.amazon.com/rekognition/latest/dg/moderation.html

Dynamic Image Transformation for Amazon CloudFront (Formerly known as
Serverless Image Handler)

Implementation Guide

 minConfidence: 90, // minimum confidence level for inappropriate content
 blur: 80, // amount to blur image
 moderationLabels: [// labels to search for
 "Hate Symbols",
 "Smoking"
]
 }
 }
})

Note

contentModeration is not supported for animated (such as, GIF) images.

Include custom response headers

This solution allows you to include headers you’d like returned alongside the response, as part of
your request.

• headers (optional, object) - Includes the provided headers in the response. Header should be
written in Pascal-Case and cannot overwrite headers that would otherwise be present in the
response (Except for Cache-Control).

const imageRequest = JSON.stringify({
 bucket: "<myImageBucket>",
 key: "<myImage.jpeg>",
 headers: {
 "Cache-Control":"max-age=86400,public"
 "Custom-Header":"some-custom-value"
 }
})

Note

A deny-list is maintained which restricts which headers can be included with this feature.
Headers which may serve a purpose for the browser or are used to support authentication/

Include custom response headers 49

Dynamic Image Transformation for Amazon CloudFront (Formerly known as
Serverless Image Handler)

Implementation Guide

authorization are included in this deny-list. For an exact list of the regular expressions
which are restricted, visit constants.ts on the Solution GitHub repository.
The presence of the expires query parameter will cause the Cache-Control header to be
overridden, regardless of any value provided in the headers field.
If your deployment is using the S3 Object Lambda Architecture , the headers at this link
cannot be included as custom headers.

Include request expiration

This solution supports the expires query parameter, which is used to decide whether the Lambda
should process a request. If an Expiry date is in the future, the request will be processed. If the
Expiry date has already passed, the Lambda will return a 400 Bad Request error with the code:
ImageRequestExpired.

Values in the expires query parameter are expected in the format: YYYYMMDDTHHmmssZ. For
example: April 9th, 2024, at 10:30:15 UTC -4 would become 20240409T143015Z.

Request expiry is compatible with signatures, and should be included as part of the path when
signing a request. For example:

const secret = '<YOUR_SECRET_VALUE_IN_SECRETS_MANAGER>';
const path = '/<YOUR_PATH>'; // Add the first '/' to path.
const expires = 'expires=<YOUR_EXPIRY>';
const to_sign = `${path}?${expires}`
const signature = crypto.createHmac('sha256', secret).update(to_sign).digest('hex');

Note

If the expires query parameter is being used in conjunction with any query parameter based
edits. When generating a signature, please ensure that the query parameters are sorted.
For more information, see Image URL signature.

Use supported Query Parameter edits

The solution supports the definition of certain image edits through the use of query parameters.
These query parameters can be used by themselves, or in conjunction with base64 or Thumbor-
style edits. For example

Include request expiration 50

https://github.com/aws-solutions/serverless-image-handler/blob/main/source/image-handler/lib/constants.ts
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/edge-function-restrictions-all.html#function-restrictions-disallowed-headers

Dynamic Image Transformation for Amazon CloudFront (Formerly known as
Serverless Image Handler)

Implementation Guide

https://<ApiEndpoint>/<image.jpeg>?format=<FormatType>

https://<ApiEndpoint>/<base64EncodedRequest>?format=<FormatType>

https://<ApiEndpoint>/<modification>/<image.jpeg>?format=<FormatType>

If a query parameter includes an edit already included in the request, it will overwrite the included
value.

The following query parameter edits are currently available:

Query parameter
name

Description Options Default

format Sets the output to
the provided format

jpg, jpeg, heic, png,
raw, tiff, webp, gif,
avif

None

fit The method that
should be used when
resizing

cover, contain, fill,
inside, outside

cover

width The width in pixels,
the image should be
resized to.

Positive integer or 0 None

height The height in pixels,
the image should be
resized to.

Positive integer or 0 None

rotate The number of
degrees the image
should be rotated

0-359 or blank (for
null)

None

flip Mirror the image
vertically

True/False False

Use supported Query Parameter edits 51

https://sharp.pixelplumbing.com/api-output#toformat
https://sharp.pixelplumbing.com/api-resize#resize
https://sharp.pixelplumbing.com/api-resize#resize
https://sharp.pixelplumbing.com/api-resize#resize
https://sharp.pixelplumbing.com/api-operation#rotate
https://sharp.pixelplumbing.com/api-operation#flip

Dynamic Image Transformation for Amazon CloudFront (Formerly known as
Serverless Image Handler)

Implementation Guide

Query parameter
name

Description Options Default

flop Mirror the image
horizontally

True/False False

greyscale Convert to 8-bit
greyscale

True/False False

Use supported Thumbor filters

This solution supports the Thumbor filters listed in this section, using API calls. To retrieve your API
endpoint for the solution, refer Use the solution with a frontend application for instructions.

To use the filters, use the following example syntax for the API call:

https://<ApiEndpoint>/<modification>/<image.jpeg>

Define the source bucket for the request

To define the bucket used when getting the image for a request, include s3:BucketName as
a modification in your request. For example, if your source buckets were "test-bucket-1,
the-other-test-bucket", to indicate that the-other-test-bucket should be used when
processing an image, enter the following:

https://<ApiEndpoint>/s3:the-other-test-bucket/<image.jpeg>

Note

Using the s3:BucketName tag requires that the bucket chosen is part of the SourceBuckets
provided upon deployment. For information on how to change the SourceBuckets after
deployment, see Backward compatibility.

Use supported Thumbor filters 52

https://sharp.pixelplumbing.com/api-operation#flop
https://sharp.pixelplumbing.com/api-colour#greyscale

Dynamic Image Transformation for Amazon CloudFront (Formerly known as
Serverless Image Handler)

Implementation Guide

Resize an image

To resize an image, specify fit-in and the desired image size. For example, to resize a JPEG image
to 300 pixels wide and 400 pixels tall, enter the following:

https://<ApiEndpoint>/fit-in/<300x400>/<image.jpeg>

Use filters

To use filters, specify a filter from the following table. For example, to blur a JPEG image, enter the
following:

https://<ApiEndpoint>/filters:blur(7)/<image.jpeg>

Note

Some Thumbor filters aren’t supported in the current version of this solution. This might
affect legacy users with advanced image request configurations. For notes about Thumbor
compatibility and source image storage limitations, see Backward compatibility. For
examples of filter usage, refer to the Thumbor documentation.

Filter name Filter syntax

Animated /filters:animated(true/false)/

Autojpg /filters:autojpg()/

Background color /filters:background_color(c
olor)/

Blur /filters:blur(7)/

Color fill /filters:fill(color)/

Convolution /filters:convolution(1;2;1;
2;4;2;1;2;1,3,false)/

Resize an image 53

http://thumbor.readthedocs.io/en/latest/filters.html

Dynamic Image Transformation for Amazon CloudFront (Formerly known as
Serverless Image Handler)

Implementation Guide

Filter name Filter syntax

Crop /10x10:100x100/

Equalize /filters:equalize()/

Grayscale /filters:grayscale()/

Image format
(.gif, .jpeg, .png, .avif, .webp, .tiff, .raw, .heif)

/filters:format(image_format)

No upscale /filters:no_upscale()/

Proportion /filters:proportion(0.0-1.0)/ ,

Quality /filters:quality(0-100)/

Resize /fit-in/800x1000/

RGB /filters:rgb(20,-20,40)/

Rotate /filters:rotate(90)/

Sharpen /filters:sharpen(0.0-10.0,
0.0-2.0, true/false)/

Smart Crop /filters:smart_crop(faceIndex,
facePadding)/

Stretch /filters:stretch()/

Strip Exif /filters:strip_exif()/

Strip ICC /filters:strip_icc()/

Upscale /filters:upscale()/

Watermark /filters:watermark(bucket,k
ey,x,y,alpha[,w_ratio[,h_ra
tio]])

Use filters 54

Dynamic Image Transformation for Amazon CloudFront (Formerly known as
Serverless Image Handler)

Implementation Guide

Use multiple filters

To use multiple filters on an image, list them in the same section of the URL. Filters process the
image in the order that you specify them. For example:

https://<api-endpoint>/fit-in/<300x400>/filters:<fill>(<00ff00>)/
filters:<rotate>(<90>)/<image.jpeg>

Custom image requests

Note

As of recent releases of Dynamic Image Transformation for Amazon CloudFront, editing the
environment variables directly is not supported for the AutoWebP (v7.0.0), SourceBuckets
(v6.2.6), OriginShieldRegion(v7.0.0) and EnableS3ObjectLambda(v7.0.0) template
parameters, instead, follow the instructions in Updating template parameters.

You can customize most settings for this solution by editing and updating the environment
variables associated with the image handler Lambda function. You can find the image handler
function in the AWS Management Console using one of the following methods:

Using the AWS Lambda console:

1. Sign in to the AWS Lambda console.

2. Select Functions. The image handler function is listed with the following naming convention:
[.replaceable]<StackName>-ImageHandlerFunction-[.replaceable]<UniqueID>.

Using the AWS CloudFormation console:

1. Sign in to the AWS CloudFormation console.

2. On the Stacks page, select this solution’s installation stack.

3. Choose the Resources tab. The image handler function is listed with a Logical ID of
ImageHandlerFunction.

After opening the Lambda function, go to the Environment variables section. Use the following
key-value pairs to customize the solutions settings.

Use multiple filters 55

https://console.aws.amazon.com/lambda
https://console.aws.amazon.com/cloudformation

Dynamic Image Transformation for Amazon CloudFront (Formerly known as
Serverless Image Handler)

Implementation Guide

Note: The solution uses the template parameter inputs to determine these initial key values, except
for REWRITE_MATCH_PATTERN and REWRITE_SUBSTITUTION.

Variable Key Value Type Description

AUTO_WEPB Yes/No Choose whether to automatic
ally accept webp image
formats.

CORS_ENABLED Yes/No Indicates whether to return
an Access-Control-Allow-
Origin header with the image
handler API response.

CORS_ORIGIN String This value is returned by the
API in the Access-Control-All
ow-Origin header. An asterisk
value supports any origin.
We recommend specifyin
g a specific origin (Ex:
https://example.d
omain) to restrict cross-site
access to your API.

Note: This value is ignored if
CORS_ENABLED is set to No.

ENABLE_DEFAULT_FAL
LBACK_IMAGE

Yes/No Choose whether to return the
default fallback image when
errors occur.

DEFAULT_FALLBACK_I
MAGE_BUCKET

String Specifies the S3 bucket which
contains the default fallback
image.

Note: This value is ignored if
the ENABLE_DEFAULT_FAL

Custom image requests 56

https://example.domain
https://example.domain

Dynamic Image Transformation for Amazon CloudFront (Formerly known as
Serverless Image Handler)

Implementation Guide

Variable Key Value Type Description

LBACK_IMAGE parameter is
set to No.

DEFAULT_FALLBACK_I
MAGE_KEY

String Defines the default fallback
image S3 object key,
including the prefix.

Note: This value is ignored if
the ENABLE_DEFAULT_FAL
LBACK_IMAGE parameter is
set to No.

ENABLE_SIGNATURE Yes/No Choose whether to use the
image URL signature.

REWRITE_MATCH_PATTERN Regex By default, this parameter
is empty. If you overwrite
this default value, use a
JavaScript-compatible regular
expression for matching
custom image requests using
the rewrite function. This
value should match the
JavaScript compatible regular
expression. For example, /
(filters-)/gm .

REWRITE_SUBSTITUTION String By default, this parameter
is empty. If you overwrite
this default value, use a
substitution string for custom
image requests using the
rewrite function. For example,
filters:.

Custom image requests 57

Dynamic Image Transformation for Amazon CloudFront (Formerly known as
Serverless Image Handler)

Implementation Guide

Variable Key Value Type Description

SECRETS_MANAGER String Defines the Secrets Manager
secret that contains the
secret key for the image URL
signature.

Note: This value is ignored
if [.replaceable]ENAB
LE_SIGNATURE is set to
No.

SECRET_KEY String Defines the Secrets Manager
secret key that contains the
secret value to create the
image URL signature.

Note: This value is ignored if
ENABLE_SIGNATURE is set to
No.

SOURCE_BUCKETS String The S3 bucket (or buckets) in
your account that contain(s)
the original images. If you’re
providing multiple buckets,
separate them by commas.

Updating template parameters

Use the following instructions to update template parameters in such a way that there is no drift
between your resources and your CloudFormation stack, and to ensure that all necessary changes
are made to your resources:

1. Sign in to the AWS CloudFormation console, select your existing Dynamic Image Transformation
for Amazon CloudFront CloudFormation stack, and select Update.

2. Leaving Use Current Template selected, click Next

3. Modify the template parameters as needed

Updating template parameters 58

Dynamic Image Transformation for Amazon CloudFront (Formerly known as
Serverless Image Handler)

Implementation Guide

4. Continue through the rest of the workflow as you would when creating the stack.

Note

Modifications made to SIH which are not reflected in the CloudFormation template may be
removed when updating template parameters in this fashion

Use the rewrite feature

You can use this solution’s rewrite feature to migrate your current image request model to
the Dynamic Image Transformation for Amazon CloudFront solution, without changing the
applications to accommodate new image URLs.

The rewrite feature translates custom URL image requests into Thumbor-consumable formats,
based on JavaScript-compatible regular expression match patterns and substitution strings. After
the image request is converted into Thumbor-consumable form, it’s then processed as a Thumbor
image request and edits are mapped to the new sharp image library.

This feature requires that you populate the following environment variables in the image handler
function. These environment variables are added to the function by default, but are left empty for
user input if the rewrite feature is needed.

Variable Key Value Type Description

REWRITE_MATCH_PATTERN Regex By default, this parameter
is empty. If you overwrite
this default value, use a
JavaScript-compatible regular
expression for matching
custom image requests using
the rewrite function. This
value should match the
JavaScript compatible regular
expression. For example, /
(filters-)/gm .

Use the rewrite feature 59

Dynamic Image Transformation for Amazon CloudFront (Formerly known as
Serverless Image Handler)

Implementation Guide

Variable Key Value Type Description

REWRITE_SUBSTITUTION String By default, this parameter
is empty. If you overwrite
this default value, use a
substitution string for custom
image requests using the
rewrite function. For example,
filters:.

You can use any of the Thumbor-supported filters listed in this section with the rewrite feature.
The following sections provide examples.

Replace filters- with filters:

If you put /(filters-)/gm in REWRITE_MATCH_PATTERN and filters: in
REWRITE_SUBSTITUTION, you can call

https://<your-CloudFront-distribution>/filters:rotate(90)/<your-image>

instead of

https://<your-CloudFront-distribution>/filters-rotate(90)/<your-image>

to rotate your image. In this example, the solution replaces filters- (filters hyphen syntax) with
filters: (filters colon syntax).

Reverse path order

You can place filters at the end of the path rather than before the image key.

1. Use the REWRITE_MATCH_PATTERN with a regular expression that parses the path into two
groups. The solution then uses REWRITE_SUBSTITUTION to switch the order of the groups.

2. Use a regular expression specified by REWRITE_MATCH_PATTERN to parse the path into
groups for a request like https://abcd.cloudfront.net/imagekey.png/fit-in/
200x200 , where the image key appears before the filters. For example:

Replace filters- with filters: 60

https://abcd.cloudfront.net/imagekey.png/fit-in/200x200
https://abcd.cloudfront.net/imagekey.png/fit-in/200x200

Dynamic Image Transformation for Amazon CloudFront (Formerly known as
Serverless Image Handler)

Implementation Guide

REWRITE_MATCH_PATTERN = /^\/(.*?\..*?)\/(.+)$/gm

3. Reverse the order of the fields with REWRITE_SUBSTITUTION to convert the request into
a Thumbor style request like https://abcd.cloudfront.net/fit-in/200x200/
imagekey.png , where the image key is moved to the end of the request. For example:

REWRITE_SUBSTITUTION = /$2/$1

Parse request type

Refer to image-request.spec.js.file, in the Dynamic Image Transformation for Amazon CloudFront
GitHub repository.

Rotate images manually

Not all browsers support rotational EXIF data for all image formats and you may notice visual
issues when viewing your images through the browser. This tends to be more common with the
WebP image format. Sharp allows the passing of a null value in the rotate field to indicate that
the orientation associated with the EXIF orientation tag should be manually applied (and the
tag removed). You can implement this for base64 image requests through the inclusion of a
rotate: null edit, or for Thumbor-style requests by including filters:strip_exif() or
filters:strip_icc() in your request path.

Parse request type 61

https://abcd.cloudfront.net/fit-in/200x200/imagekey.png
https://abcd.cloudfront.net/fit-in/200x200/imagekey.png
https://raw.githubusercontent.com/aws-solutions/serverless-image-handler/develop/source/image-handler/test/image-request/parse-request-type.spec.ts

Dynamic Image Transformation for Amazon CloudFront (Formerly known as
Serverless Image Handler)

Implementation Guide

Developer guide

This section provides the source code and an API reference for the solution.

Source code

Visit our GitHub repository to download the source files for this solution and to share your
customizations with others. Additionally, if you require an earlier version of the CloudFormation
template, you can request from the GitHub issues page.

The AWS CDK generates the Dynamic Image Transformation for Amazon CloudFront templates.
See the README.md file for additional information.

API reference

This uses the sharp Node.js library to provide high-speed image processing. Open the library, then
select API from the navigation menu to view the API guides.

Source code 62

https://github.com/aws-solutions/dynamic-image-transformation-for-amazon-cloudfront/
https://github.com/aws-solutions/dynamic-image-transformation-for-amazon-cloudfront/issues
https://github.com/aws-solutions/dynamic-image-transformation-for-amazon-cloudfront/blob/main/README.md
https://sharp.pixelplumbing.com/

Dynamic Image Transformation for Amazon CloudFront (Formerly known as
Serverless Image Handler)

Implementation Guide

Reference

This section includes information about an optional feature for collecting unique metrics for
this solution, data surrounding response times of a deployment using the S3 Object Lambda
architecture, pointers to related resources, and a list of builders who contributed to this solution.

Anonymized data collection

This solution includes an option to send anonymized operational metrics to AWS. We use this data
to better understand how customers use this solution and related services and products. When
invoked, the following information is collected and sent to AWS:

• Solution ID - The AWS solution identifier

• Version - The Dynamic Image Transformation for Amazon CloudFront solution version

• Unique ID (UUID) - Randomly generated, unique identifier

• Timestamp - The timestamp when the solution’s Lambda function runs

• Region - The AWS Region the solution is being deployed in

• CorsEnable - Whether CORS is activated

• NumberOfSourceBuckets - Number of source buckets

• DeployDemoUi - Whether the Demo UI deployment is activated

• LogRetentionPeriod - The log retention period

• AutoWebP - Whether AutoWebP is activated

• EnableSignature - Whether the image URL signature is activated

• EnableDefaultFallbackImage - Whether the default fallback image is activated

• UseExistingCloudFrontDistribution - Whether the deployment uses a natively created, or an
existing CloudFront distribution

• EnableS3ObjectLambda - Whether the S3 Object Lambda architecture is being used

• OriginShieldRegion - What region Origin Shield is enabled in (or if disabled)

• AWS/Lambda/Invocations - Quantity of image handler Lambda function invocations

• AWS/CloudFront/Requests - Quantity of requests hitting the image handler distribution

• AWS/CloudFront/BytesDownloaded - Quantity of bytes downloaded from the image handler
distribution

Anonymized data collection 63

Dynamic Image Transformation for Amazon CloudFront (Formerly known as
Serverless Image Handler)

Implementation Guide

• AWSLambdaBilledDuration - Sum of billed duration for image handler Lambda function

• AWSLambdaMemorySize - Memory size of image handler Lambda function

• DefaultRequestsCount - The count of requests which use the default base64 request encoding

• ThumborRequestsCount - The count of requests which use Thumbor-style request encoding

• CustomRequestsCount - The count of requests which use a custom request encoding

• QueryParamRequestsCount - The count of requests which use query parameter based image
edits

• ExpiresRequestsCount - The count of requests which use the expires query parameter

AWS owns the data gathered through this survey. Data collection is subject to the AWS
Privacy Notice. To opt out of this feature, complete the following steps before launching the
CloudFormation template.

1. Download the dynamic-image-transformation-for-amazon-cloudfront.template
AWS CloudFormation template to your local hard drive.

2. Open the CloudFormation template with a text editor.

3. Modify the AWS CloudFormation template mapping section from:

Solution:
 Config:
 AnonymousUsage: "Yes",
 DeployCloudWatchDashboard: …,
 SharpSizeLimit: …,
 SolutionId: …,
 Version: …

to:

Solution:
 Config:
 AnonymousUsage: No,
 DeployCloudWatchDashboard: …,
 SharpSizeLimit: …,
 SolutionId: …,
 Version: …

4. Sign in to the AWS CloudFormation console.

Anonymized data collection 64

https://aws.amazon.com/privacy/
https://aws.amazon.com/privacy/
https://console.aws.amazon.com/cloudformation/home

Dynamic Image Transformation for Amazon CloudFront (Formerly known as
Serverless Image Handler)

Implementation Guide

5. Select Create stack.

6. On the Create stack page, Specify template section, select Upload a template file.

7. Under Upload a template file, choose Choose file and select the edited template from your
local drive.

8. Choose Next and follow the steps in Deployment process overview to launch the solution.

S3 Object Lambda architecture response latency

Average response latency for uncached images on a deployment using the S3 Object Lambda
architecture. As the processing is identical between both architectures, processing durations should
be similar to those when using the API Gateway architecture, this dataset can serve as a reference
for determining the maximum size of an image that can be returned by the solution, especially
for sizes which are not supported by the API Gateway architecture. In cases where Timeouts are
encountered, increasing the memory allocation of the BackendImageHandler Lambda function may
lead to performance enhancements.

Image Size/Filt
ers

No filters Grayscale Equalize Format (PNG to
JPG)

1 MB 0.35s 0.65s 0.95s 0.41s

10 MB 0.78s 2.95s 4.64s 1.30s

50 MB 2.28s 10.96s 22.55s 4.65s

100 MB 6.99s 25.74s Timeout (>30s) 11.56s

Related resources

Refer to the sharp Node.js library for more information about sharp.

Contributors

• Simon Krol

• Kamyar Ziabari

S3 Object Lambda architecture response latency 65

https://sharp.pixelplumbing.com/

Dynamic Image Transformation for Amazon CloudFront (Formerly known as
Serverless Image Handler)

Implementation Guide

• Ryan Hayes

• Beomseok Lee

• George Lenz

• Dmitry Fisenko

• Doug Toppin

• Garvit Singh

Contributors 66

Dynamic Image Transformation for Amazon CloudFront (Formerly known as
Serverless Image Handler)

Implementation Guide

Revisions

Publication date: June 2017.

Check the CHANGELOG.md file in the GitHub repository to see all notable changes and updates to
the software. The changelog provides a clear record of improvements and fixes for each version.

67

https://github.com/aws-solutions/serverless-image-handler/blob/main/CHANGELOG.md

Dynamic Image Transformation for Amazon CloudFront (Formerly known as
Serverless Image Handler)

Implementation Guide

Notices

Customers are responsible for making their own independent assessment of the information in
this document. This document: (a) is for informational purposes only, (b) represents AWS current
product offerings and practices, which are subject to change without notice, and (c) does not create
any commitments or assurances from AWS and its affiliates, suppliers, or licensors. AWS products
or services are provided "as is" without warranties, representations, or conditions of any kind,
whether express or implied. AWS responsibilities and liabilities to its customers are controlled by
AWS agreements, and this document is not part of, nor does it modify, any agreement between
AWS and its customers.

Dynamic Image Transformation for Amazon CloudFront is licensed under the terms of the Apache
License Version 2.0.

68

https://www.apache.org/licenses/LICENSE-2.0
https://www.apache.org/licenses/LICENSE-2.0

	Dynamic Image Transformation for Amazon CloudFront (Formerly known as Serverless Image Handler)
	Table of Contents
	Serverless architecture for cost-effective image processing
	Features and benefits
	Use cases
	Concepts and definitions

	Architecture overview
	Architecture diagram
	S3 Object Lambda Architecture Info
	Choosing an Architecture
	Cost consideration
	Image Size
	Updating an existing deployment

	Architecture details
	Demo UI
	Smart cropping
	Content moderation
	Cross-origin resource sharing
	Image URL signature
	Default fallback image
	AWS services in this solution

	Plan your deployment
	Supported AWS Regions
	Opt-in Regions

	Cost
	Sample cost table
	Demo UI
	Image modification and analysis

	Security
	Demo UI
	IAM roles
	Amazon API Gateway
	Amazon CloudFront

	Quotas
	AWS CloudFormation quotas
	AWS Lambda quotas
	Amazon API Gateway quotas

	Optional Mappings
	Operational Dashboard
	Sharp Size Limit

	Deploy the solution
	AWS CloudFormation template
	Launch the stack
	Attaching an existing CloudFront distribution
	Setting the Origin
	Setting the behavior

	Update the solution
	Backward compatibility
	Thumbor compatibility
	Custom compatibility
	Maintain existing endpoint and cache when modifying architecture type

	Troubleshooting
	Contact AWS Support
	Create case
	How can we help?
	Additional information
	Help us resolve your case faster
	Solve now or contact us

	Uninstall the solution
	Using the AWS Management Console
	Using AWS Command Line Interface
	Deleting the Amazon S3 buckets

	Use the solution
	Use the demo UI
	Use the solution with a frontend application
	Create and use image requests
	Dynamically resize photos
	Edit images
	Restricted operations

	Use smart cropping
	Use round cropping
	Overlay an image
	Overwrite animated status
	Activate and use content moderation
	Include custom response headers
	Include request expiration

	Use supported Query Parameter edits
	Use supported Thumbor filters
	Define the source bucket for the request
	Resize an image
	Use filters
	Use multiple filters

	Custom image requests
	Updating template parameters
	Use the rewrite feature
	Replace filters- with filters:
	Reverse path order
	Parse request type

	Rotate images manually

	Developer guide
	Source code
	API reference

	Reference
	Anonymized data collection
	S3 Object Lambda architecture response latency
	Related resources
	Contributors

	Revisions
	Notices

